
How to Create Your First Bash Script

Let's create a simple script in bash that outputs Hello World.

Create a file named hello_world.sh

touch hello_world.sh

Find the path to your bash shell.

which bash

In my case, the path is /usr/bin/bash and I will include this in
the shebang.

Write the command.

We will echo "hello world" to the console.

Our script will look something like this:

#! /usr/bin/bash
echo "Hello World"

Edit the file hello_world.sh using a text editor of your
choice and add the above lines in it.

Provide execution rights to your user.

Modify the file permissions and allow execution of the script by
using the command below:

chmod u+x hello_world.sh

chmod modifies the existing rights of a file for a particular user.

We are adding +x to user u.

Run the script.

You can run the script in the following ways:

./hello_world.sh

bash hello_world.sh.

Here's the output:

Two ways to run scripts

The Basic Syntax of Bash Scripting

Just like any other programming language, bash scripting follows
a set of rules to create programs understandable by the
computer. In this section, we will study the syntax of bash
scripting.

How to define variables

We can define a variable by using the syntax
variable_name=value. To get the value of the variable, add

$ before the variable.

#!/bin/bash
A simple variable example
greeting=Hello
name=Tux
echo $greeting $name

Tux is also the name of the Linux mascot, the penguin.

Hi, I am Tux.

Arithmetic Expressions

Below are the operators supported by bash for mathematical
calculations:

Operato

r

Usage

+ addition

- subtraction

* multiplication

/ division

** exponentiatio

n

% modulus

Let's run a few examples.

Note the spaces, these are part of the syntax

Numerical expressions can also be calculated and stored in a
variable using the syntax below:

var=$((expression))

Let's try an example.

#!/bin/bash

var=$((3+9))
echo $var

Fractions are not correctly calculated using the above methods
and truncated.

For decimal calculations, we can use bc command to get the

output to a particular number of decimal places. bc (Bash
Calculator) is a command line calculator that supports
calculation up to a certain number of decimal points.

echo "scale=2;22/7" | bc

Where scale defines the number of decimal places required in
the output.

Getting output to 2 decimal places

How to read user input

Sometimes you'll need to gather user input and perform relevant
operations.

In bash, we can take user input using the read command.

read variable_name

To prompt the user with a custom message, use the -p flag.

read -p "Enter your age" variable_name

Example:

#!/bin/bash

echo "Enter a numner"
read a

echo "Enter a numner"
read b

var=$((a+b))
echo $var

Numeric Comparison logical operators

Comparison is used to check if statements evaluate to true or

false. We can use the below shown operators to compare two
statements:

Operation Syntax Explanation

Equality num1 -eq

num2

is num1 equal to num2

Greater than equal

to

num1 -ge

num2

is num1 greater than equal to

num2

Greater than num1 -gt

num2

is num1 greater than num2

Less than equal to num1 -le num2 is num1 less than equal to num2

Less than num1 -lt num2 is num1 less than num2

Not Equal to num1 -ne

num2

is num1 not equal to num2

Syntax:

if [conditions]
 then
 commands
fi

Example:

Let's compare two numbers and find their relationship:

read x
read y

if [$x -gt $y]
then
echo X is greater than Y
elif [$x -lt $y]
then
echo X is less than Y
elif [$x -eq $y]
then
echo X is equal to Y
fi

Output:

Conditional Statements (Decision Making)

Conditions are expressions that evaluate to a boolean
expression (true or false). To check conditions, we can use

if, if-else, if-elif-else and nested conditionals.

The structure of conditional statements is as follows:

• if...then...fi statements

• if...then...else...fi statements

• if..elif..else..fi
• if..then..else..if..then..fi..fi.. (Nested

Conditionals)

Syntax:

if [[condition]]
then
 statement
elif [[condition]]; then
 statement
else
 do this by default
fi

To create meaningful comparisons, we can use AND -a and OR

-o as well.

The below statement translates to: If a is greater than 40 and b
is less than 6.

if [$a -gt 40 -a $b -lt 6]

Example: Let's find the triangle type by reading the lengths of its
sides.

read a
read b
read c

if [$a == $b -a $b == $c -a $a == $c]
then
echo EQUILATERAL

elif [$a == $b -o $b == $c -o $a == $c]
then
echo ISOSCELES
else
echo SCALENE

fi

Output:

Test case #1

Test case #2

Test case #3

Looping and skipping

For loops allow you to execute statements a specific number of
times.

Looping with numbers:

In the example below, the loop will iterate 5 times.

#!/bin/bash

for i in {1..5}
do
 echo $i
done

Looping with strings:

We can loop through strings as well.

#!/bin/bash

for X in cyan magenta yellow
do
 echo $X
done

While loop

While loops check for a condition and loop until the condition
remains true. We need to provide a counter statement that
increments the counter to control loop execution.

In the example below, ((i += 1)) is the counter statement

that increments the value of i.

Example:

#!/bin/bash
i=1
while [[$i -le 10]] ; do
 echo "$i"
 ((i += 1))
done

Reading files

Suppose we have a file sample_file.txt as shown below:

We can read the file line by line and print the output on the
screen.

#!/bin/bash

LINE=1

while read -r CURRENT_LINE
 do
 echo "$LINE: $CURRENT_LINE"
 ((LINE++))
done < "sample_file.txt"

Output:

Lines with line number printed

How to execute commands with back ticks

If you need to include the output of a complex command in your
script, you can write the statement inside back ticks.

Syntax:

var= commands

Example: Suppose we want to get the output of a list of
mountpoints with tmpfs in their name. We can craft a

statement like this: df -h | grep tmpfs.

To include it in the bash script, we can enclose it in back ticks.

#!/bin/bash

var=`df -h | grep tmpfs`
echo $var

Output:

How to get arguments for scripts from the command line

It is possible to give arguments to the script on execution.

$@ represents the position of the parameters, starting from one.

#!/bin/bash

for x in $@
do
 echo "Entered arg is $x"
done

Run it like this:

./script arg1 arg2

How to Automate Scripts by Scheduling via cron Jobs

Cron is a job scheduling utility present in Unix like systems. You
can schedule jobs to execute daily, weekly, monthly or in a
specific time of the day. Automation in Linux heavily relies on
cron jobs.

Below is the syntax to schedule crons:

Cron job example
* * * * * sh /path/to/script.sh

Here, * represents minute(s) hour(s) day(s) month(s) weekday(s),
respectively.

Below are some examples of scheduling cron jobs.

SCHEDULE SCHEDULED VALUE

5 0 * 8 * At 00:05 in August.

5 4 * * 6 At 04:05 on Saturday.

0 22 * * 1-

5

At 22:00 on every day-of-week from Monday through

Friday.

You can learn about cron in detail in this blog post.

How to Check Existing Scripts in a System

Using crontab

crontab -l lists the already scheduled scripts for a particular
user.

My scheduled scripts

Using the find command

The find command helps to locate files based on certain

patterns. As most of the scripts end with .sh, we can use the
find script like this:

find . -type f -name "*.sh"

https://www.freecodecamp.org/news/cron-jobs-in-linux/

Where,

• . represents the current directory. You can change the
path accordingly.

• -type f indicates that the file type we are looking for is a
text based file.

• *.sh tells to match all files ending with .sh.

	How to Create Your First Bash Script
	Create a file named hello_world.sh
	Find the path to your bash shell.
	Write the command.
	Provide execution rights to your user.
	Run the script.

	The Basic Syntax of Bash Scripting
	How to define variables
	Arithmetic Expressions
	How to read user input
	Numeric Comparison logical operators
	Conditional Statements (Decision Making)
	Looping and skipping
	Looping with numbers:
	Looping with strings:
	While loop

	Reading files
	How to execute commands with back ticks
	Syntax:

	How to get arguments for scripts from the command line

	How to Automate Scripts by Scheduling via cron Jobs
	How to Check Existing Scripts in a System
	Using crontab
	Using the find command

