
First of all, in order to write efficient rules, it is important to understand how the Snort detection

engine handles Snort rules. Snort 2.0 introduced the fast pattern matcher, which accelerates the

detection process. The basic idea is that the detection engine organizes rules with a two-level

labeling system to select some rules out of all loaded rules for detection (please note that Snort

loads all rules on startup). The top-level label is a protocol-port number pair and the second-level

label is a content (or uricontent) match.

The second-level label is chosen using the principle of first and longest non-negative content match.

In the example below, for instance, Rule 1's second-level label is “writing”.

[Rule 1]

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:”Bad Search”; content:”writing”;

content:”bad”; content:”pig”; content:”rules”; content:!”snort”; sid:1;)

As of version 2.8.3, Snort supports the “fast_pattern” content modifier so that you can choose which

content match will be used as the second-level label (e.g. Rule 2's second level label is “pig” thanks

to this modifier).

[Rule 2]

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:”Bad Search”; content:”writing”;

content:”bad”; content:”pig”; fast_pattern; content:”rules”; content:!”snort”; sid:2;)

Let me explain the two-level labeling system in an even simpler fashion. Snort has big boxes, labeled

with a protocol-port number pair, and these big boxes contain many bins that are labeled with fast

content matches as well as an unlabeled bin. When Snort launches, it puts rules into the labeled bins

if the rules have at least one content match, otherwise they are put into the unlabeled bin. Then,

Snort uses these labeled containers to choose which rules are to be used to examine network traffic.

For example, Snort has a box with the “http/80” label, and the box has bins with “bad”, “good”,

“writing”, “erasing”, and “pig” labels, as well as an unlabeled bin. Figure 1 shows which rules are in

the labeled (or unlabeled) bins.

[Figure 1: Labeled boxes with labeled bins]

****** *“http/80”+ ****************

* “bad” bin: 12, 13, 14

* “good” bin: 10, 11

* “writing” bin: 1, 3

* “erasing” bin: 4, 8

* “pig” bin: 2

* unlabeled bin: 9, 15

If Alice searches for “writing bad pig rules” in a web browser, Snort will use the rules with sids 1, 2, 3,

9, 12, 13, 14, 15. Note that the rules in the unlabeled bin are always used, so it is important for a rule

to have at least one content match to keep it out of the unlabeled bin. Also, it is more efficient for

rules to have a long and specific fast pattern content match (second-level label) that is unlikely to be

used often. For instance, rules in bin labeled “a” are much more likely to be used than those in a bin

labeled “pneumonoultramicroscopicsilicovolcanoconiosis”.

After Snort chooses the rules to be used for detection, it parses those rules into option lists (as of

Snort 2.8.2, Snort parses the rules into a tree structure to make detection even faster, but the

principle of writing good rules remains the same). In the following example, Snort parses Rule 3 into

Table 1.

[Rule 3]

alert tcp $EXTERNAL_NET 80 -> $HOME_NET any (msg:”Bad Result”; flow:to_client,established;

flowbits:isset,bad_search; content:”bacon”; content:”|90 90 90 90 90|”; sid:3;)

[Table 1: Parsed Rule 3]

flow:to_client,established

flowbits:isset,bad_search

content:”bacon”

content:”|90 90 90 90 90|”

Snort goes through this option list in order, so it is a good idea to use less expensive checks such as

dsize, flow and flowbits first to weed out mismatches and avoid further processing. After testing

target traffic against this option list, the source/destination addresses and port numbers of a rule are

checked.

Writing Snort rules is quite easy, but writing good Snort rules can be tricky. Try to keep these

principles in mind, they will help with traffic processing.

