First of all, in order to write efficient rules, it is important to understand how the Snort detection
engine handles Snort rules. Snort 2.0 introduced the fast pattern matcher, which accelerates the
detection process. The basic idea is that the detection engine organizes rules with a two-level
labeling system to select some rules out of all loaded rules for detection (please note that Snort
loads all rules on startup). The top-level label is a protocol-port number pair and the second-level
label is a content (or uricontent) match.

The second-level label is chosen using the principle of first and longest non-negative content match.
In the example below, for instance, Rule 1's second-level label is “writing”.

[Rule 1]

alert tcp SHOME_NET any -> SEXTERNAL_NET 80 (msg:”Bad Search”; content:”writing”;
content:”bad”; content:”pig”; content:”rules”; content:!”snort”; sid:1;)

As of version 2.8.3, Snort supports the “fast_pattern” content modifier so that you can choose which
content match will be used as the second-level label (e.g. Rule 2's second level label is “pig” thanks
to this modifier).

[Rule 2]

alert tcp SHOME_NET any -> SEXTERNAL_NET 80 (msg:”Bad Search”; content:”writing”;
content:”bad”; content:”pig”; fast_pattern; content:”rules”; content:!”snort”; sid:2;)

Let me explain the two-level labeling system in an even simpler fashion. Snort has big boxes, labeled
with a protocol-port number pair, and these big boxes contain many bins that are labeled with fast
content matches as well as an unlabeled bin. When Snort launches, it puts rules into the labeled bins
if the rules have at least one content match, otherwise they are put into the unlabeled bin. Then,
Snort uses these labeled containers to choose which rules are to be used to examine network traffic.

For example, Snort has a box with the “http/80” label, and the box has bins with “bad”, “good”,

2

“writing”, “erasing”, and “pig” labels, as well as an unlabeled bin. Figure 1 shows which rules are in
the labeled (or unlabeled) bins.

[Figure 1: Labeled boxes with labeled bins]

* ok % Kk k ["http/80"] ok K ok ok ok ok K K Kok ok ko K K

* “pad” bin: 12, 13, 14
* “good” bin: 10, 11

* “writing” bin: 1, 3

* “erasing” bin: 4, 8

* “pig” bin: 2

* unlabeled bin: 9, 15

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3k 3k %k %k %k %k 5k %k %k %k %k >k 5k %k %k k k

If Alice searches for “writing bad pig rules” in a web browser, Snort will use the rules with sids 1, 2, 3,
9, 12, 13, 14, 15. Note that the rules in the unlabeled bin are always used, so it is important for a rule
to have at least one content match to keep it out of the unlabeled bin. Also, it is more efficient for
rules to have a long and specific fast pattern content match (second-level label) that is unlikely to be
used often. For instance, rules in bin labeled “a” are much more likely to be used than those in a bin
labeled “pneumonoultramicroscopicsilicovolcanoconiosis”.

After Snort chooses the rules to be used for detection, it parses those rules into option lists (as of
Snort 2.8.2, Snort parses the rules into a tree structure to make detection even faster, but the
principle of writing good rules remains the same). In the following example, Snort parses Rule 3 into
Table 1.

[Rule 3]

alert tcp SEXTERNAL_NET 80 -> SHOME_NET any (msg:”Bad Result”; flow:to_client,established;
flowbits:isset,bad_search; content:”bacon”; content:”|90 90 90 90 90|”; sid:3;)

[Table 1: Parsed Rule 3]
flow:to_client,established
flowbits:isset,bad_search
content:”bacon”

content:”[90 909090 90|”

Snort goes through this option list in order, so it is a good idea to use less expensive checks such as
dsize, flow and flowbits first to weed out mismatches and avoid further processing. After testing
target traffic against this option list, the source/destination addresses and port numbers of a rule are
checked.

Writing Snort rules is quite easy, but writing good Snort rules can be tricky. Try to keep these
principles in mind, they will help with traffic processing.

