Preprocessor:
A preprocessor in Snort is a module that runs before the rule engine. Its job is to prepare, normalize, analyze, or enrich packets/flows so the detection rules can work correctly and robustly.
Need for Preprocessing:
Attackers often try to evade IDS engines by manipulating the traffic:
· Sending packets out of order
· Creating overlapping segments
· Sending tiny segments to overload IDS
· Modifying sequence numbers
· Using retransmissions to hide payload
· Breaking malicious code across many small segments

Lifecycle of preprocessing:
· Packet capture (from NIC or pcap)
· Link-layer processing (Ethernet header etc.)
· IP processing & defragmentation (frag2/frag3) — if enabled
· Protocol-specific preprocessors (e.g., stream5 does TCP reassembly, http_inspect normalizes HTTP)
· Rule engine / detection (rules run on normalized/reassembled data)
· Output/logging/alerting
Various Preprocessors available are
· Frag2
· Frag3
· Stream4
· Stream5
· Http inspect etc
Stream4:
Stream4 is a TCP stream reassembly and session tracking preprocessor used in older versions of Snort (1.x and early 2.x). It reassembles the packets into a complete stream, making detection possible
· Reassemble TCP streams (put fragmented TCP packets back together)
· Track TCP sessions (stateful inspection)
· Normalize traffic so that Snort rules can inspect the reconstructed data
· Prevent evasion attacks where intruders try to confuse the IDS using TCP/IP tricks

Major Functions of Stream4
1. TCP Stream Reassembly
Stream4 collects out-of-order or fragmented TCP segments and rebuilds them into a complete data stream.
 This allows Snort to inspect the final reconstructed payload instead of isolated packets.
2. Stateful Session Tracking
It keeps track of the full TCP session state (SYN, SYN/ACK, ACK, Established, FIN, RST).
 This ensures Snort analyzes only valid, established connections and detects abnormal session behavior.

3. TCP Normalization
Stream4 cleans and standardizes TCP traffic by handling overlaps, retransmissions, and inconsistent sequence numbers.
 Normalization prevents attackers from confusing or bypassing the IDS using TCP/IP tricks.
4. Evasion Attack Detection
It identifies suspicious behaviors such as tiny fragment attacks, sequence number anomalies, and inconsistent flags.
 This helps detect attempts to evade IDS detection through manipulated TCP packets.
5. Direction and Flow Identification
Stream4 determines which side the client is and which is the server in a TCP communication.
 This helps Snort apply rules more accurately based on traffic direction.
6. Stream Buffer Management
It manages memory buffers used to store TCP segments during reassembly.
 Stream4 also enforces limits to prevent buffer overflow or resource exhaustion attacks.

Frag2:
IP packets are split into smaller pieces (called fragments) for transmission.
Snort’s Frag2/Frag3 preprocessors must reassemble those fragments back into the original IP packet before analysis.
frag2 is a preprocessor in Snort that deals with IP fragmentation.
 Its main role is to defragment fragmented IP packets before Snort applies detection rules.
Attackers often try to evade IDS by breaking malicious packets into multiple small fragments, so the IDS cannot inspect the full payload.
 Examples of such attacks: Teardrop, overlapping fragments, tiny fragment attacks, etc.
Frag2 working process:
Reassembling fragmented IP packets
It reconstructs all fragments into a single packet before Snort analyzes it.
Detecting anomalies in fragments
It checks for:
· Overlapping fragments
· Malformed fragments
· Inconsistent fragment offsets
· Excessive fragments (possible DoS)
Keeping reassembly behavior like real operating systems:
Different OSes reassemble fragments differently. Attackers exploit these differences.
 Frag2 tries to mimic common OS behaviors to catch such attacks.
Limitations:
· Frag2 is older, suitable for Snort 1.x v and earlier 2.x versions
· Slower
· less accurate
· easier to evade
· lacks OS-specific and anomaly detection features

Frag3:
frag3 is the newer, improved IP defragmentation preprocessor in Snort.
 It replaces frag2 and provides better accuracy, performance, and evasion resistance.
It reassembles fragmented IP packets (Layer 3) before Snort sends them to the detection engine.
Frag3 was created to fix several limitations of frag2
Key Functions of frag3
1. Reassembles fragmented IP packets
Just like frag2 → combines fragments into a full packet.
2. Advanced OS-based reassembly
Different OSes handle fragmentation differently.
 Frag3 can emulate:
· Linux
· Windows
· Solaris
· BSD etc
This stops target-based evasion attacks.
3. Detects fragmentation anomalies
Frag3 checks for:
· Overlapping fragments
· Too many fragments
· Small fragment attacks
· Inconsistent fragment offsets
· Duplicate fragments
4. Memory and performance improvements
It Supports:
· Larger fragment queues
· Timeout mechanisms
· Multiple tracking sessions

HTTP Inspect:
HTTP Inspect is a Snort preprocessor that:
· Normalizes HTTP traffic
· Detects anomalies in HTTP headers, URLs, methods, and encodings
· Protects against evasion techniques
It ensures Snort sees the real, decoded HTTP content exactly as the webserver will see it.
Need for HTTP Inspect:
Attackers often try to hide malicious payloads using:
· Unicode encoding
· Directory traversal tricks (../..%2F..)
· Long or malformed URLs
· Double-encoding
· Bad HTTP methods
· Shellcode inside requests
· Evasion techniques to bypass IDS
Without HTTP Inspect, Snort may miss them.
Key Functions of HTTP Inspect
HTTP Normalization:
It converts HTTP traffic into a standard form.
Examples:
· %2F → /
· %20 → space
· %2e%2e%2f → ../
· Removes extra slashes
So the payload becomes clean and readable before detection.
URI/URL Decoding
Decodes:
· Hex-encoded values
· Double-encoded values
· Unicode
· Directory traversal patterns
Detecting Anomalies
HTTP Inspect detects:
· Oversized headers
· Non-standard or dangerous HTTP methods (TRACK, SEARCH, etc.)
· Long URLs
· Chunked encoding attacks
· Malformed requests
· Directory traversal attempts
Alerts include:
 OVERSIZE_DIR, NON_RFC_CHAR, LONG_HEADER, etc.

PLUGINS:
Snort “plugins” are modular extensions that add extra capabilities to Snort beyond the core detection engine. They help Snort become more flexible, powerful, and customizable
Snort uses plugins in 3 key areas:
A) Detection Plugins (most important for rules)
These plugins implement the tests that rule options perform.
Examples:
· content plugin → searches for strings in packet payload
· uricontent plugin → searches only in HTTP URI
· pcre plugin → runs regular expressions
· threshold plugin → alert rate-limiting
· flowbits plugin → track session states
Whenever a rule uses an option like:
content:"abc";
pcre:"/admin/i";
flow:to_server;
Snort internally uses the content plugin, PCRE plugin, flow plugin, etc.
They provide detection logic for rules.
B) Preprocessor Plugins
These are the modules that process packets before the rule engine, such as:
· Frag2 / Frag3
· Stream4 / Stream5
· HTTP Inspect
· Portscan Detector
· RPC Decode
· SMTP Inspect
These are also plugins — Snort loads them dynamically.
They do reassembly, normalization, anomaly detection
C) Output Plugins
These plugins decide how Snort should output alerts/logs:
· alert_fast
· alert_full
· alert_syslog
· log_tcpdump

Alert Detail Report:
Alert Detail Report is a complete log of an intrusion event recorded by Snort, containing rule details, IP/port info, timestamps, packet contents, and protocol information.
1. Rule Information
This section provides the details of the Snort rule that triggered the alert. It includes the message (msg:) specified in the rule, the Signature ID (SID), revision number (rev), and the classification and priority assigned to the signature. This information helps investigators quickly understand what type of attack the alert corresponds to, and whether it is high-risk or informational.
2. Timestamp
The alert includes a precise date and time indicating when Snort detected the suspicious activity. Accurate timestamps are crucial for intrusion investigations because they allow analysts to correlate Snort alerts with logs from firewalls, servers, and other devices. This helps reconstruct the attack timeline and determine how long the intrusion lasted.
3. Source and Destination Details
This part contains the source IP address, destination IP address, source port, destination port, and the protocol used (e.g., TCP, UDP, ICMP). These network identifiers help analysts determine where the attack originated, which system was targeted, and what service or application was being accessed. It is essential for identifying malicious hosts and understanding attacker behavior.

4. Packet Header Information
The Alert Detail Report also includes important packet-level metadata such as TTL, IP ID, packet length, TCP flags (SYN, ACK, FIN), sequence numbers, and acknowledgment numbers. These fields give deeper insight into how the packet was constructed and can reveal anomalies that indicate spoofing, scanning, or protocol abuse.
5. Payload Information (Hex and ASCII Dump)
One of the most critical portions of the report is the packet payload, displayed in both hexadecimal and ASCII formats. This allows security analysts to directly inspect the content that triggered the alert. For example, payloads may contain suspicious commands, malware signatures, encoded characters, shellcode, URLs, or SQL injection patterns. Examining the payload helps confirm whether the alert indicates real malicious activity.
6. Preprocessor Warnings (If Any)
If the event was detected or influenced by preprocessors such as HTTP Inspect, Frag3, or Stream5, their anomaly messages are included in the alert. These warnings help identify evasion techniques like fragmentation anomalies, encoding tricks, oversized headers, directory traversal attempts, or TCP irregularities. Preprocessor alerts are valuable in spotting advanced or stealthy intrusions.
7. Additional Metadata
Some Snort output plugins include extra fields such as sensor name, interface, packet number, and capture length. This information helps in environments where multiple sensors are deployed, making it easier to identify which IDS node detected the intrusion. It also allows investigators to track packets within large collections of logged traffic.
CASE STUDIES:
Snort Case Studies (Examples)
Format: Possible Attack/Evasion → How Snort Helps Mitigate

1. Case Study: SQL Injection Attempt on Web Server
Possible Attack / Evasion
An attacker tries to exploit a vulnerable web form using malicious SQL query strings like:
' OR 1=1 --

They attempt evasion using URL encoding (%27, %20, etc.).
 Snort Mitigates
· HTTP Inspect Preprocessor normalizes encoded characters, preventing evasion.
· Snort SQL injection rules (e.g., web-attacks.rules) detect typical payloads.
· Generates alerts showing attacker IP, encoded payload, target URL.

2. TCP Port Scan Using Nmap (Stealth SYN Scan)
Possible Attack / Evasion
Attacker uses:
nmap -sS <target>

The scan sends SYN packets without completing the 3-way handshake (stealth scan).
 They may slow down packet rate to avoid detection.
Snort Mitigates
· sfPortscan preprocessor detects SYN, FIN, and NULL scans.
· Threshold-based detection flags low-and-slow scans.
· Alerts categorize attacks as "SYN scan", "TCP sweep", etc., helping incident responders identify reconnaissance activity.

3.Fragmentation Evasion Attack (Sneaking Payload Through Fragments)
Possible Attack / Evasion
Attacker splits the malicious payload into multiple small IP fragments to evade IDS pattern matching.
 Example: A shellcode is broken across 10 tiny packets.
Snort Mitigates
· Frag3 preprocessor performs advanced reassembly:
· Handles overlapping fragments
· Normalizes timeouts
· Reassembles packets before sending them to the detection engine
· Detects malicious payloads post-reassembly.
· Prevents classic Frag2 bypass issues like overlapping fragment tricks.

4.Malware Beaconing / C2 Traffic Detection
Possible Attack / Evasion
A malware-infected host sends periodic HTTP POST requests to a command-and-control (C2) server.
 The attacker tries to hide the traffic with:
· uncommon ports (ex: TCP/8088)
· randomized URIs
· fake user-agents
Snort Mitigates
· HTTP Inspect normalizes URIs and headers.
· Snort malware rules inspect:
· POST body patterns
· Known user-agent strings
· Suspicious beacon intervals
· Detection triggers “MALWARE-CNC” alerts.
· Helps analysts track infected hosts inside the network.

5.Brute-Force Login Attempts on SSH
Possible Attack / Evasion
Attacker uses automated tools (Hydra, Medusa) to brute-force SSH credentials:
hydra -l root -P passwords.txt ssh://target

Evasion attempts:
· Distributed brute-force from multiple IPs
· Delaying attempts to avoid rate limits
Snort Mitigates
· Snort rate-based rules detect multiple failed login attempts.
· Preprocessors track connection attempts to the same destination port.
· Alerts show:
· username attempts
· source IPs
· connection counts
· Helps network teams block attackers (e.g., via firewall, fail2ban).

