Parsing log data

Parsing is the process of splitting unstructured log data into attributes (key/value pairs). You
can use these attributes to facet or filter logs in useful ways. This in turn helps you build
better charts and alerts.

New Relic parses log data according to rules. This document describes how logs parsing
works, how to use built-in rules, and how to create custom rules.

You can also create, query, and manage your log parsing rules by using API,

Parsing example

A good example is a default NGINX access log containing unstructured text. It is useful for
searching but not much else. Here's an example of a typical line:

127.180.71.3 - - [10/May/1997:08:05:32 +0000] "GET /downloads/product_1 HTTP/1.1" 304 0 "-"
"Debian APT-HTTP/1.3 (0.8.16~exp12ubuntul0.21)"

In an unparsed format, you would need to do a full text search to answer most questions.
After parsing, the log is organized into attributes, like response code and request URL:

{
"remote_addr":"93.180.71.3",

"time":"1586514731",

"method":"GET",

"path":"/downloads/product_1",

"version":"HTTP/1.1",

"response”:"304",

"bytesSent": 0,

"user_agent": "Debian APT-HTTP/1.3 (0.8.16~exp12ubuntul0.21)"

}

Parsing makes it easier to create custom queries that facet on those values. This helps you
understand the distribution of response codes per request URL and quickly find problematic
pages.

How log parsing works
Here's an overview of how New Relic implements parsing of logs:

Log parsing How it works
What o All parsing takes place against the message field; no other fields
can be parsed.
o Each parsing rule is created by using a NRQL WHERE clause
that determines which logs the rule will attempt to parse.
o To simplify the matching process, we recommend adding
a logtype attribute to your logs. However, you are not limited to


https://docs.newrelic.com/docs/using-new-relic/data/understand-data/query-new-relic-data
https://docs.newrelic.com/docs/logs/ui-data/parsing/#logtype

Log parsing How it works

using logtype; one or more attributes can be used as matching
criteria in the NRQL WHERE clause.

When « Parsing will only be applied once to each log message. If
multiple parsing rules match the log, only the first that succeeds
will be applied.

« Parsing takes place during log ingestion, before data is written
to NRDB. Once data has been written to storage, it can no
longer be parsed.

« Parsing occurs in the pipeline before data enrichments take
place. Be careful when defining the matching criteria for a
parsing rule. If the criteria is based on an attribute that doesn't
exist until after parsing or enrichment take place, that data won't
be present in the logs when matching occurs. As a result, no
parsing will happen.

How o Rules can be written in Grok, regex, or a mixture of the two.
Grok is a collection of patterns that abstract away complicated
regular expressions.

« If the content of the message field is JSON, it will be parsed
automatically.

Parse attributes using Grok

Parsing patterns are specified using Grok, an industry standard for parsing log messages. Any
incoming log with a logtype field will be checked against our built-in patterns, and if
possible, the associated Grok pattern is applied to the log.

Grok is a superset of regular expressions that adds built-in named patterns to be used in place
of literal complex regular expressions. For instance, instead of having to remember that an
integer can be matched with the regular expression (?:[+-]?(?:[0-9]+)), you can just

write %{INT} to use the Grok pattern INT, which represents the same regular expression.

You can always use a mix of regular expressions and Grok pattern names in your matching
string. For more information, see our list of Grok syntax and supported types.

Variable names must be explicitely set and be lowercase like %{URI:uri}. Expressions such
as %{URI} or %{URI:URI} would not work.

Organizing by logtype

New Relic's log ingestion pipeline can parse data by matching a log event to a rule that
describes how the log should be parsed. There are two ways log events can be parsed:

e Use a built-in rule.
o Define a custom rule.


https://grokdebug.herokuapp.com/patterns
https://docs.newrelic.com/docs/logs/ui-data/parsing/#built-in-rules
https://docs.newrelic.com/docs/logs/ui-data/parsing/#grok-syntax
https://docs.newrelic.com/docs/logs/ui-data/parsing/#built-in-rules
https://docs.newrelic.com/docs/logs/ui-data/parsing/#custom-parsing

Rules are a combination of matching logic and parsing logic. Matching is done by defining a
query match on an attribute of the logs. Rules are not applied retroactively. Logs collected
before a rule is created are not parsed by that rule.

The simplest way to organize your logs and how they are parsed is to include
the logtype field in your log event. This tells New Relic what built-in rule to apply to the
logs.

IMPORTANT

Once a parsing rule is active, data parsed by the rule is permanently changed. This cannot be
reverted.

Limits

Parsing is computationally expensive, which introduces risk. Parsing is done for custom rules
defined in an account and for matching patterns to a log. A large number of patterns or poorly
defined custom rules will consume a huge amount of memory and CPU resources while also
taking a very long time to complete.

In order to prevent problems, we apply two parsing limits: per-message-per-rule and per-
account.

Limit Description
Per-message-per-rule The per-message-per-rule limit prevents the time spent
parsing any single message from being greater than 100
ms. If that limit is reached, the system will cease
attempting to parse the log message with that rule.

The ingestion pipeline will attempt to run any other
applicable on that message, and the message will still be
passed through the ingestion pipeline and stored in
NRDB. The log message will be in its original,
unparsed format.

Per-account The per-account limit exists to prevent accounts from
using more than their fair share of resources. The limit
considers the total time spent processing all log
messages for an account per-minute.

The limit is not a fixed value; it scales up or down
proportionally to the volume of data stored daily by the
account and the environment size that is subsequently
allocated to support that customer.

Built-in parsing rules

Common log formats have well-established parsing rules already created for them. To get the
benefit of built-in parsing rules, add the logtype attribute when forwarding logs. Set the value



to something listed in the following table, and the rules for that type of log will be applied

automatically.

List of built-in rules

The following logtype attribute values map to a predefined parsing rule. For example, to
query the Application Load Balancer:

e From the New Relic Ul, use the format logtype:"alb".
e From NerdGraph, use the format logtype = 'alb’.

To learn what fields are parsed for each rule, see our documentation about built-in parsing

rules.

logtype

apache

apache error
alb

cassandra
cloudfront-web
elb

haproxy http
ktranslate-health

linux cron
linux messages
iis w3c

mongodb
monit

mysql-error
nginx
nginx-error
postgresql

rabbitmg
redis

route-53
syslog-rfc5424

Add the logtype attribute

Log source
Apache access logs
Apache error logs
Application load balancer
logs
Cassandra logs
CloudFront web logs
Elastic Load Balancer logs
HAProxy logs
KTranslate container health
logs
Linux cron
Linux messages

Microsoft IS server logs -
W3C format

MongoDB logs
Monit logs

MySQL error logs
NGINX access logs
NGINX error logs
Postgresql logs
Rabbitmq logs
Redis logs

Route 53 logs

Syslogs with RFC5424
format

Example matching query
logtype:"apache"
logtype:"apache_error"
logtype:"alb"

logtype:"cassandra”
logtype:"cloudfront-web"
logtype:"elb"
logtype:"haproxy_http"
logtype:"ktranslate-
health"
logtype:"linux_cron"
logtype:"linux_messages"
logtype:"iis_w3c"

logtype:"mongodb”
logtype:"monit"
logtype:"mysql-error”
logtype:"nginx"
logtype:"nginx-error"”
logtype:"postgresql”
logtype:"rabbitmq"
logtype:"redis"
logtype:"route-53"
logtype:"syslog-rfc5424"

When aggregating logs, it's important to provide metadata that makes it easy to organize,
search, and parse those logs. One simple way of doing this is to add the attribute logtype to
the log messages when they are shipped. Built-in parsing rules are applied by default to

certain logtype values.



https://docs.newrelic.com/docs/apis/nerdgraph/examples/nerdgraph-log-parsing-rules-tutorial/
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#apache
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#apache_error
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#application-load-balancer
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#cassandra
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#cloudfront
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#elastic-load-balancer
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#haproxy
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#ktranslate-health
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules/#linux_cron
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules/#linux_messages
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules/#iis
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#mongodb
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#monit
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#mysql-error
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#nginx
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#nginx-error
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#postgresql
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#rabbitmq
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#redis
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules#route53
https://docs.newrelic.com/docs/logs/ui-data/built-log-parsing-rules/#syslog-rfc5424
https://docs.newrelic.com/docs/logs/ui-data/parsing/#built-in-rules

TIP

The fields logType, logtype, and LOGTYPE are all supported for built-in rules. For ease of
searching, we recommend that you align on a single syntax in your organization.

You can add attributes to the JSON request sent to New Relic. In this example we add
a logtype attribute of value nginx to trigger the built-in NGINX parsing rule.

Logs API.

POST /log/v1 HTTP/1.1
Host: log-api.newrelic.com
Content-Type: application/json
X-License-Key: YOUR_LICENSE_KEY
Accept: */*
Content-Length: 133
{
"timestamp": TIMESTAMP_IN_UNIX_EPOCH,
"message": "User 'xyz' logged in",
"logtype": "accesslogs”,
"service": "login-service",
"hostname": "login.example.com”

}

Create and view custom parsing rules

Many logs are formatted or structured in a unique way. In order to parse them, custom logic
must be built and applied.

Troubleshooting

If parsing is not working the way you intended, it may be due to:


https://docs.newrelic.com/docs/logs/new-relic-logs/log-api/introduction-log-api

Logic: The parsing rule matching logic does not match the logs you want.

Timing: If your parsing matching rule targets a value that doesn't exist yet, it will fail.
This can occur if the value is added later in the pipeline as part of the enrichment
process.

Limits: There is a fixed amount of time available every minute to process logs via
parsing, patterns, drop filters, etc. If the maximum amount of time has been spent,
parsing will be skipped for additional log event records.



