Event normalization in SIEM

Each log source have own event format. In enterprise environment there can be hundreds of
systems from which we collect and analyze logs. Ideally analyst must know format for each
system or can quickly dive into them. Each system have own purpose and events can have
different information. Assume we start event collection and incident occuried. How we can find
events that relate to incident? Which query we must run to find this events?

Preface

Normalization provide ablitity to map event fields from any log source to standard scheme or
framework. Each log source type can have own log format and content. Web proxy logs contains
source IP-address URL, status code, browser name and version and etc. Antispam logs contains
sender and destination email addresses, source IP-address, source domain, spam score. Firewall
logs contains source and destination IP-addresses and ports, protocol and etc. In this examples
there the same event fields like source IP-address and a lot of different. To support huge number
of systems normalization scheme must take into consideration on them.

Normalization scheme

Number of elements in scheme is a long time dispute. There 2 main approaches when we
examine normalization scheme:

1. Short scheme. Only most popular fields are used. About 20 fields. For example,
username, source and destination IP-addresses and ports and etc. This fields supported for
any supported log source. Analyst can add custom fields to scheme. Sometimes custom
fields cannot be used as variables, indexes and etc. This is limitation for custom fields.
For big installations this is serious limitations. The value of short scheme — good
performance and simplicity. Unfortunately any new custom field for each log source type
requires time resources for writing parsers and mapping.

2. Full scheme. 99.9% of common fields are included in this scheme. About 300-400 fields.
There few reserved custom fields to which analyst can map exotic fields from events.

How normalization work
If we does not deep into technical details:

1. Raw event stream received by collector/connector.

2. Collector find to which log source type besides event and load parser or take it from
cache.

3. For each event applied parser. Parser is set of regex. Each regex used to find field(source

ip, destination port, username and etc.) in event.

Event normalized and categorized.

Aggregation and filtering applied.

Next event coming.

o oA

Check normalization in SIEM

Quality of parser and normalization depends on developer. Quality — percentage of events and
fields from event which will be normalized. More percentage = better quality. A lot of systems
exists and must be supported. Writing good parsers consume time and human resources. Some
vendors can select only critical security events for normalization. If we multiple it on the short
normalization scheme development resource savings will be significant. But quality is medium.

All normalized fields and highlighted in green.

Scadmi plined o il

[——————— r ' e

| I | Fvet K i i
| |.r-|.-|lu0-|.-'\c wellun 12 |n... I JIREE S
et e v L |
| v LT savgort- L e
g , |
|

) || et dupreant g ——
Firgwall | | | i Pttt 3
b— — e ——_—_——

[|

|
|

Evenl atream | : wormallastien
|

= Innal
| ewrer Per [
PotmikmiF | s
Irdinabne Parl e

Good event normalization example

Ngrmislined v Bl

| Lig Sourde |

|
|

Event aireami | : mormalizetisn
|

|
I Waoks | 18000 sccvms-la 12
e ot et el
[o) gt
II w11 dugari=0 1] I
|

Firgwall

Bad event normalization example
In red highlighted fields that does not normalized because in parser missed some regex.
Normalization fields examples

o Username;

e Source IP(Attacker Address);

e Destination IP(Target Address);
e Protocol;

e Request URL,

o Asset Name.

Comparison
Feature Qradiar SIEM | ArcSight ESMJExpress |Comments
Mumbar of normalized fialds Fr]]
arcSight hawe limited number of
Add custam lields ¥ ¥ resarved fialds
Change built-in p N o] Onily vendor can change built-in parsers
Extend buill-in parsers ¥ ¥
Qualety of normalization Madium Gogd
Frae acoess to built-in parsers M M
Writing parser far your own application ¥ ¥

